Docking molecular da enzima fosfolipase A2 com derivados de bromo
DOI:
https://doi.org/10.59464/2359-4632.2025.3236Palavras-chave:
Docking molecular, Fosfolipase A2, Bromo, Agkistrodon halys pallasResumo
Objetivo: desenvolver um estudo de docking molecular com a enzima fosfolipase A2 (PLA2) na presença de compostos análogos ao brometo de p-bromofenacil com vistas ao reposicionamento de fármacos. Métodos: a estrutura terciária da proteína alvo de Agkistrodon halys pallas (Viperidae) foi obtida do banco de dados RCSB PDB e os ligantes obtidos do site PubChem foram: 4,4'-dibromobenzil e 2-bromopropiofenona. Após o refinamento das moléculas, foram realizadas as análises de docking molecular com intuito de avaliar a energia livre de Gibbs, as distâncias entre átomos e tipos de ligações no sítio ativo. Resultados: o composto 4,4'-dibromobenzil esteve relacionado com o resíduo do sítio ativo Tyr 52 por meio de interações hidrofóbicas. Em relação ao composto 2-bromopropiofenona foi possível observar interação hidrofóbica com o resíduo do sítio ativo Tyr 52 e ligação de hidrogênio com o resíduo Gly 32. Outros resíduos de aminoácidos (Gly 32 e Asp 49) que se localizam próximos da região de catálise apresentaram interações hidrofóbicas. Conclusões: apesar dos átomos dos ligantes apresentarem proximidade ao sítio catalítico da enzima, estes apresentaram interações hidrofóbicas e ligações de hidrogênio. Estudos in vitro e in vivo devem ser realizados para corroborar os resultados teóricos.
Referências
Capriles PV, Guimarães AC, Otto TD, Miranda AB, Dardenne LE, Degrave WM. Structural modeling and comparative analysis of homologous, analogous and specific proteins from Trypanosoma cruzi versus Homo sapiens: putative drug targets for chagas' disease treatment. BMC Genomics 2010, 11, 610. DOI: https://doi.org/10.1186/1471-2164-11-610.
Luscombe NM, Greenbaumm D, Gerstein M. What is bioinformatics? An introduction and overview. Yearbook of medical informatics 2001, 10(1): 83-100. DOI: https://doi.org/10.1055/s-0038-1638103.
Gauthier J, Vincent AT, Charette SJ, Derome, N. A brief history of bioinformatics. Briefings in bioinformatics 2019, 6, 20. DOI: https://doi.org/10.1093/bib/bby063.
Pinzi L, Rastelli G. Molecular docking: shifting paradigms in drug discovery. International journal of molecular sciences 2019, 20, 18. DOI: https://doi.org/10.3390/ijms20184331.
Hiu JJ, Yap MKK. Cytotoxicity of snake venom enzymatic toxins: Phospholipase A2 and l-amino acid oxidase. Biochemical Society Transactions, v. 48, n. 2, p. 719-731, 2020. DOI: https://doi.org/10.1042/BST20200110.
Murakami M, Sato H, Taketomi Y. Updating phospholipase A2 biology. Biomolecules 2020, 10, 10. DOI: https://doi.org/10.3390/biom10101457.
Lind KF, Hansen E, Østerud B, Eilertsen KE, Bayer A, Engqvist M, Andersen JH. Antioxidant and anti-inflammatory activities of barettin. Marine Drugs, 2013, 11(7), 2655-2666. DOI: https://doi.org/10.3390/md11072655.
Lefi, N., Kazachenko, A. S., Raja, M., Issaoui, N., & Kazachenko, A. S. (2023). Molecular structure, spectral analysis, molecular docking and physicochemical studies of 3-bromo-2-hydroxypyridine monomer and dimer as bromodomain inhibitors. Molecules, 28(6), 2669. Doi 10.3390/molecules28062669
Bordcoch G, Masjoan-Juncos JX. Biomarkers of Cardiopulmonary Injury and Impact of Bromine Toxicity. In: Biomarkers in Toxicology. 2022, Cham: Springer International Publishing. DOI: https://doi.org/10.1007/978-3-031-07392-2_46.
Wallace AC, Laskowski RA, Thornton JM. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein engineering, design and selection, 1995, 8 (2): 127-134. DOI: https://doi.org/10.1093/protein/8.2.127.
Eberhardt J, Santos-Martins D, Tillack AF, Forli S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. Journal of chemical information and modeling 2021 23, 61. DOI: https://doi.org/10.1021/acs.jcim.1c00203.
Yuan S, Chan HS, Hu Z. Using PyMOL as a platform for computational drug design. Wiley Interdisciplinary Reviews: Computational Molecular Science 2017, 7, 2. DOI: https://doi.org/10.1002/wcms.1298
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov, I N, Bourne PE. The Protein Data Bank. Nucleic Acids Research 2000, 28. DOI: https://doi.org/10.1093/nar/28.1.235
Kim S, Chen J, Cheng T, Gindulyte A, He, J.; He, S.; Li, Q.; Shoemaker, B. A.; Thiessen, P. A.; Yu, B.; Zaslavsky, L.; Zhang, J.; Bolton, E. E.; PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Research 2021, 49. DOI: https://doi.org/10.1093/nar/gkaa971.
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF Chimera—a visualization system for exploratory research and analysis. Journal of Computational Chemistry 2004, 25, 13. DOI: https://doi.org/10.1002/jcc.20084.
Zhao H, Tang L, Wang X, Zhou Y, Lin Z. Structure of a snake venom phospholipase A2 modified by p-bromo-phenacyl-bromide. Toxicon. 1998, 36(6), 875-886. DOI: https://doi.org/10.1016/s0041-0101(97)00169-4.
Gerebtzoff G, Li‐Blatter X, Fischer H, Frentzel A, Seelig A. Halogenation of drugs enhances membrane binding and permeation. ChemBioChem, 2004, 5(5), 676-684. DOI: https://doi.org/10.1002/cbic.200400017.
Abdel-Rahman, L. H., Abdelghani, A. A., AlObaid, A. A., El-ezz, D. A., Warad, I., Shehata, M. R., & Abdalla, E. M. (2023). Novel Bromo and methoxy substituted Schiff base complexes of Mn (II), Fe (III), and Cr (III) for anticancer, antimicrobial, docking, and ADMET studies. Scientific reports, 13(1), 3199.
Schmiel DH, Miller VL. Bacterial phospholipases and pathogenesis. Microbes and infection, v. 1, n. 13, p. 1103-1112, 1999. DOI: https://doi.org/10.1016/s1286-4579(99)00205-1.
Dennis EA. Diversity of group types, regulation, and function of phospholipase A2. The Journal of biological chemistry, v. 269, n. 18, p. 13057-13060, 1994. DOI: https://doi.org/10.1016/S0021-9258(17)36794-7.
Quach ND, Arnold RD, Cummings BS. (2014). Secretory phospholipase A2 enzymes as pharmacological targets for treatment of disease. Biochemical pharmacology, 90(4), 338-348. DOI: https://doi.org/10.1016/j.bcp.2014.05.022.
Franco-Vázquez AM, Lazcano-Pérez F, Mejía-Sánchez MA, Corzo G. Zamudio, F.,Carbajal-Saucedo, A. & Arreguín-Espinosa, R. (2023). Structural, biochemical and immunochemical characterization of an acidic phospholipase A2 from Lachesis acrochorda (Viperidae: Crotalinae) venom. Toxicon, 107528. DOI: https://doi.org/10.1016/j.toxicon.2023.107528.
Mouchlis VD, Dennis EA. Phospholipase A2 catalysis and lipid mediator lipidomics. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, v. 1864, n. 6, p. 766-771, 2019. DOI: https://doi.org/10.1016/j.bbalip.2018.08.010.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 Revista Científica Integrada

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.











